top of page

Stemcell Research & Evidence - Ophthalmic Diseases

New Zealand Stem Cell Therapy Auckland & Christchurch

We are compiling a list of topics that may help you find relevant information relating more specifically to your problems or interests.

You can select a particular topic from the list of headings, which will then take you to the first article on that condition.

There may be more than one article so scroll down to view.

New Zealand Stem Cell Clinic Auckland & Christchurch

Glaucoma, Stem Cells, and Gene Therapy

Int J Stem Cells. 2017 Nov 30;10(2):119-128.


Source

Neurogenetic Ward, Comprehensive Child Developmental Center, Shiraz University of Medical Sciences, Shiraz, Iran.


Abstract

Glaucoma is the second most common cause of blindness, affecting 70∼80 million people around the world. The death of retinal ganglion cells (RGCs) is the main cause of blindness related to this disease. Current therapies do not provide enough protection and regeneration of RGCs. A novel opportunity for treatment of glaucoma is application of technologies related to stem cell and gene therapy. In this perspective we will thus focus on emerging approaches to glaucoma treatment including stem cells and gene therapy.

Stemming retinal regeneration with pluripotent stem cells

Prog Retin Eye Res. 2019 Mar;69:38-56.


Source

Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China. Electronic address:
jinzb@mail.eye.ac.cn.


Abstract

Cell replacement therapy is a promising treatment for irreversible retinal cell death in diverse diseases, such as age-related macular degeneration (AMD), Stargardt's disease, retinitis pigmentosa (RP) and glaucoma. These diseases are all characterized by the degeneration of one or two retinal cell types that cannot regenerate spontaneously in humans. Aberrant retinal pigment epithelial (RPE) cells can be observed through optical coherence tomography (OCT) in AMD patients. In RP patients, the morphological and functional abnormalities of RPE and photoreceptor layers are caused by a genetic abnormality. Stargardt's disease or juvenile macular degeneration, which is characterized by the loss of the RPE and photoreceptors in the macular area, causes central vision loss at an early age. Loss of retinal ganglion cells (RGCs) can be observed in patients with glaucoma. Once the retinal cell degeneration is triggered, no treatments can reverse it. Transplantation-based approaches have been proposed as a universal therapy to target patients with various concomitant diseases. Both the replacement of dead cells and neuroprotection are strategies used to rescue visual function in animal models of retinal degeneration. Diverse retinal cell types derived from pluripotent stem cells, including RPE cells, photoreceptors, RGCs and even retinal organoids with a layered structure, provide unlimited cell sources for transplantation. In addition, mesenchymal stem cells (MSCs) are multifunctional and protect degenerating retinal cells. The aim of this review is to summarize current findings from preclinical and clinical studies. We begin with a brief introduction to retinal degenerative diseases and cell death in diverse diseases, followed by methods for retinal cell generation. Preclinical and clinical studies are discussed, and future concerns about efficacy, safety and immunorejection are also addressed.

The Future of Stem Cells and Their Derivates in the Treatment of Glaucoma

Int J Mol Sci. 2021 Oct 14;22(20):11077.


Source

Department of Ophthalmology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania.


Abstract

This review focuses on the clinical translation of preclinical studies, especially those that have used stem cells in the treatment of glaucoma, with an emphasis on optic nerve regeneration. The studies referred to in the review aim to treat optic nerve atrophy, while cell therapies targeting other sites in the eye, such as the trabecular meshwork, have not been addressed. Such complex and varied pathophysiological mechanisms that lead to glaucoma may explain the fact that although stem cells have a high capacity of neuronal regeneration, the treatments performed did not have the expected results and the promise offered by animal studies was not achieved. By analyzing the facts associated with failure, important lessons are to be learned: the type of stem cells that are used, the route of administration, the selection of patients eligible for these treatments, additional therapies that support stem cells transplantation and their mode of action, methods of avoiding the host's immune response. Many of these problems could be solved using exosomes (EV), but also miRNA, which allows more targeted approaches with minimal side effects.

A novel glaucoma approach: Stem cell regeneration of the trabecular meshwork

Prog Retin Eye Res. 2022 Sep;90:101063.


Source

Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.


Abstract

Glaucoma is the leading cause of global irreversible blindness, necessitating research for new, more efficacious treatment options than currently exist. Trabecular meshwork (TM) cells play an important role in the maintenance and function of the aqueous outflow pathway, and studies have found that there is decreased cellularity of the TM in glaucoma. Regeneration of the TM with stem cells has been proposed as a novel therapeutic option by several reports over the last few decades. Stem cells have the capacity for self-renewal and the potential to differentiate into adult functional cells. Several types of stem cells have been investigated in ocular regenerative medicine: tissue specific stem cells, embryonic stem cells, induced pluripotent stem cells, and adult mesenchymal stem cells. These cells have been used in various glaucoma animal models and ex vivo models and have shown success in IOP homeostasis and TM cellularity restoration. They have also demonstrated stability without serious side effects for a significant period of time. Based on current knowledge of TM pathology in glaucoma and existing literature regarding stem cell regeneration of this tissue, we propose a human clinical study as the next step in understanding this potentially revolutionary treatment paradigm. The ability to protect and replace TM cells in glaucomatous eyes could change the field forever.

Stem cells, retinal ganglion cells and glaucoma

Dev Ophthalmol. 2014;53:111-21.


Source

Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Md., USA.


Abstract

Retinal ganglion cells (RGCs) represent an essential neuronal cell type for vision. These cells receive inputs from light-sensing photoreceptors via retinal interneurons and then relay these signals to the brain for further processing. RGC diseases that result in cell death, e.g. glaucoma, often lead to permanent damage since mammalian nerves do not regenerate. Stem cell differentiation can generate cells needed for replacement or can be used to generate cells capable of secreting protective factors to promote survival. In addition, stem cell-derived cells can be used in drug screening research. Here, we discuss the current state of stem cell research potential for interference in glaucoma and other optic nerve diseases with a focus on stem cell differentiation to RGCs.

Utilization of Modified Induced Pluripotent Stem Cells as the Advance Therapy of Glaucoma

Clin Ophthalmol. 2022 Aug 29;16:2851-2859.


Source

Faculty of Medicine, Diponegoro University, Semarang, Central Java, Indonesia.


Abstract

Glaucoma is an optic neuropathy disease that causes cupping of the optic disc and decreased visual field. Glaucoma is still the second leading cause of blindness globally, with a worldwide prevalence of more than 76 million people in 2020. However, no therapy can cure glaucoma completely, especially when optic nerve damage has occurred. Available treatments only play a role in keeping the intraocular pressure stable This research aims to determine the potential use of modified stem cell therapy to treat intraocular damage in glaucoma cases. Literature research was conducted by involving seven online databases, namely Pubmed, ScienceDirect®, Proquest, EBSCOhost®, SAGE®, Clinicalkey®, and Scopus, published between 2010-2020 with the keywords stem cells; therapy; glaucoma; optic nerve. Six articles were selected, and out of the six articles, all writings were experimental research. The entire literature states that modified stem cell therapy has the potential as a therapeutic option in treating intraocular damage in patients with glaucoma. Based on the systematic literature review that has been carried out, it is known that stem cell therapy has the potential to be a therapeutic option in treating glaucoma cases. Much more research is needed to assess the effectiveness of modified stem cell therapy in managing intraocular damage due to glaucoma.

The Potential of Human Stem Cells for the Study and Treatment of Glaucoma

Invest Ophthalmol Vis Sci. 2016 Apr 1;57(5):ORSFi1-6.


Source

Department of Ophthalmology Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.


Abstract
 

Purpose: Currently, the only available and approved treatments for glaucoma are various pharmacologic, laser-based, and surgical procedures that lower IOP. Although these treatments can be effective, they are not always sufficient, and they cannot restore vision that has already been lost. The goal of this review is to briefly assess current developments in the application of stem cell biology to the study and treatment of glaucoma and other forms of optic neuropathy.


Methods: A combined literature review and summary of the glaucoma-related discussion at the 2015 "Sight Restoration Through Stem Cell Therapy" meeting that was sponsored by the Ocular Research Symposia Foundation (ORSF).


Results: Ongoing advancements in basic and eye-related developmental biology have enabled researchers to direct murine and human stem cells along specific developmental paths and to differentiate them into a variety of ocular cell types of interest. The most advanced of these efforts involve the differentiation of stem cells into retinal pigment epithelial cells, work that has led to the initiation of several human trials. More related to the glaucoma field, there have been recent advances in developing protocols for differentiation of stem cells into trabecular meshwork and retinal ganglion cells. Additionally, efforts are being made to generate stem cell-derived cells that can be used to secrete neuroprotective factors.


Conclusions: Advancing stem cell technology provides opportunities to improve our understanding of glaucoma-related biology and develop models for drug development, and offers the possibility of cell-based therapies to restore sight to patients who have already lost vision.

Therapeutic Potential of Mesenchymal Stem Cells and Their Secretome in the Treatment of Glaucoma

Stem Cells Int. 2019 Dec 27;2019:7869130.


Source

Regenerative Processing Plant, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, Florida, USA.


Abstract
 

Glaucoma represents a group of progressive optic neuropathies characterized by gradual loss of retinal ganglion cells (RGCs), the neurons that conduct visual information from the retina to the brain. Elevated intraocular pressure (IOP) is considered the main reason for enhanced apoptosis of RGCs in glaucoma. Currently used therapeutic agents are not able to repopulate and/or regenerate injured RGCs and, therefore, are ineffective in most patients with advanced glaucoma. Accordingly, several new therapeutic approaches, including stem cell-based therapy, have been explored for the glaucoma treatment. In this review article, we emphasized current knowledge regarding molecular and cellular mechanisms responsible for beneficial effects of mesenchymal stem cells (MSCs) and their secretome in the treatment of glaucoma. MSCs produce neurotrophins and in an exosome-dependent manner supply injured RGCs with growth factors enhancing their survival and regeneration. Additionally, MSCs are able to generate functional RGC-like cells and induce proliferation of retinal stem cells. By supporting integrity of trabecular meshwork, transplanted MSCs alleviate IOP resulting in reduced loss of RGCs. Moreover, MSCs are able to attenuate T cell-driven retinal inflammation providing protection to the injured retinal tissue. In summing up, due to their capacity for neuroprotection and immunomodulation, MSCs and their secretome could be explored in upcoming clinical studies as new therapeutic agents for glaucoma treatment.

Adipose-derived stem cells integrate into trabecular meshwork with glaucoma treatment potential

FASEB J. 2020 May;34(5):7160-7177.


Source

Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.


Abstract
 

The trabecular meshwork (TM) is an ocular tissue that maintains intraocular pressure (IOP) within a physiologic range. Glaucoma patients have reduced TM cellularity and, frequently, elevated IOP. To establish a stem cell-based approach to restoring TM function and normalizing IOP, human adipose-derived stem cells (ADSCs) were induced to differentiate to TM cells in vitro. These ADSC-TM cells displayed a TM cell-like genotypic profile, became phagocytic, and responded to dexamethasone stimulation, characteristic of TM cells. After transplantation into naive mouse eyes, ADSCs and ADSC-TM cells integrated into the TM tissue, expressed TM cell markers, and maintained normal IOP, outflow facility, and extracellular matrix. Cell migration and affinity results indicated that the chemokine pair CXCR4/SDF1 may play an important role in ADSC-TM cell homing. Our study demonstrates the possibility of applying autologous or allogeneic ADSCs and ADSC-TM cells as a potential treatment to restore TM structure and function in glaucoma.

Stem Cell Therapy for Retinal Degeneration

Biologics. 2021 Jul 27;15:299-306.


Source

Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.


Abstract
 

There is a rise in the number of people who have vision loss due to retinal diseases, and conventional therapies for treating retinal degeneration fail to repair and regenerate the damaged retina. Several studies in animal models and human trials have explored the use of stem cells to repair the retinal tissue to improve visual acuity. In addition to the treatment of age-related macular degeneration (AMD) and diabetic retinopathy (DR), stem cell therapies were used to treat genetic diseases such as retinitis pigmentosa (RP) and Stargardt's disease, characterized by gradual loss of photoreceptor cells in the retina. Transplantation of retinal pigment epithelial (RPE) cells derived from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have shown promising results in improving retinal function in various preclinical models of retinal degeneration and clinical studies without any severe side effects. Mesenchymal stem cells (MSCs) were utilized to treat optic neuropathy, RP, DR, and glaucoma with positive clinical outcomes. This review summarizes the preclinical and clinical evidence of stem cell therapy and current limitations in utilizing stem cells for retinal degeneration.

Stemming retinal regeneration with pluripotent stem cells

Prog Retin Eye Res. 2019 Mar;69:38-56.


Source

Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China. Electronic address:
jinzb@mail.eye.ac.cn


Abstract

Cell replacement therapy is a promising treatment for irreversible retinal cell death in diverse diseases, such as age-related macular degeneration (AMD), Stargardt's disease, retinitis pigmentosa (RP) and glaucoma. These diseases are all characterized by the degeneration of one or two retinal cell types that cannot regenerate spontaneously in humans. Aberrant retinal pigment epithelial (RPE) cells can be observed through optical coherence tomography (OCT) in AMD patients. In RP patients, the morphological and functional abnormalities of RPE and photoreceptor layers are caused by a genetic abnormality. Stargardt's disease or juvenile macular degeneration, which is characterized by the loss of the RPE and photoreceptors in the macular area, causes central vision loss at an early age. Loss of retinal ganglion cells (RGCs) can be observed in patients with glaucoma. Once the retinal cell degeneration is triggered, no treatments can reverse it. Transplantation-based approaches have been proposed as a universal therapy to target patients with various concomitant diseases. Both the replacement of dead cells and neuroprotection are strategies used to rescue visual function in animal models of retinal degeneration. Diverse retinal cell types derived from pluripotent stem cells, including RPE cells, photoreceptors, RGCs and even retinal organoids with a layered structure, provide unlimited cell sources for transplantation. In addition, mesenchymal stem cells (MSCs) are multifunctional and protect degenerating retinal cells. The aim of this review is to summarize current findings from preclinical and clinical studies. We begin with a brief introduction to retinal degenerative diseases and cell death in diverse diseases, followed by methods for retinal cell generation. Preclinical and clinical studies are discussed, and future concerns about efficacy, safety and immunorejection are also addressed.

Regenerating Eye Tissues to Preserve and Restore Vision

Cell Stem Cell. 2018 Jun 1;22(6):834-849.


Source

Neural Stem Cell Institute, Rensselaer, NY 12144, USA; Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA.


Abstract

Ocular regenerative therapies are on track to revolutionize treatment of numerous blinding disorders, including corneal disease, cataract, glaucoma, retinitis pigmentosa, and age-related macular degeneration. A variety of transplantable products, delivered as cell suspensions or as preformed 3D structures combining cells and natural or artificial substrates, are in the pipeline. Here we review the status of clinical and preclinical studies for stem cell-based repair, covering key eye tissues from front to back, from cornea to retina, and including bioengineering approaches that advance cell product manufacturing. While recognizing the challenges, we look forward to a deep portfolio of sight-restoring, stem cell-based medicine.

Photoreceptor cell replacement in macular degeneration and retinitis pigmentosa: A pluripotent stem cell-based approach

Prog Retin Eye Res. 2019 Jul;71:1-25.


Source

Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012, Paris, France.


Abstract

The human retina fails to regenerate and cell-based therapies offer options for treatment of blinding retinal diseases, such as macular degeneration and retinitis pigmentosa. The last decade has witnessed remarkable advances in generation of retinal cells and retinal tissue from human pluripotent stem cells (PSCs). The development of 3D culture systems allowing generation of human retinal organoids has substantially increased the access to human material for future clinical applications aiming at replacing the lost photoreceptors in retinal degenerative diseases. This review outlines the advances that have been made toward generation and characterization of transplantable photoreceptors from PSCs and summarizes the current status of PSC-based preclinical studies for photoreceptor replacement conducted in animal models. Considering the recent turning point in our understanding of donor photoreceptor integration, this review focuses on the most crucial obstacles that hinder the photoreceptor replacement, discusses the most promising strategies to overcome them in the future, and provides a perspective on the approaching advancement in the application of PSC technology for treatment of photoreceptor degenerative diseases.

Human Pluripotent Stem Cell-Derived Neural Progenitor Cells Promote Retinal Ganglion Cell Survival and Axon Recovery in an Optic Nerve Compression Animal Model

Int J Mol Sci. 2021 Nov 20;22(22):12529.


Source

Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Gyeonggi-do, Korea.


Abstract
 

Human pluripotent stem cell-derived neural progenitor cells (NPCs) have the potential to recover from nerve injury. We previously reported that human placenta-derived mesenchymal stem cells (PSCs) have neuroprotective effects. To evaluate the potential benefit of NPCs, we compared them to PSCs using R28 cells under hypoxic conditions and a rat model of optic nerve injury. NPCs and PSCs (2 × 106 cells) were injected into the subtenon space. After 1, 2, and 4 weeks, we examined changes in target proteins in the retina and optic nerve. NPCs significantly induced vascular endothelial growth factor (Vegf) compared to age-matched shams and PSC groups at 2 weeks; they also induced neurofilaments in the retina compared to the sham group at 4 weeks. In addition, the expression of brain-derived neurotrophic factor (Bdnf) was high in the retina in the NPC group at 2 weeks, while expression in the optic nerve was high in both the NPC and PSC groups. The low expression of ionized calcium-binding adapter molecule 1 (Iba1) in the retina had recovered at 2 weeks after NPC injection and at 4 weeks after PSC injection. The expression of the inflammatory protein NLR family, pyrin domain containing 3 (Nlrp3) was significantly reduced at 1 week, and that of tumor necrosis factor-α (Tnf-α) in the optic nerves of the NPC group was lower at 2 weeks. Regarding retinal ganglion cells, the expressions of Brn3a and Tuj1 in the retina were enhanced in the NPC group compared to sham controls at 4 weeks. NPC injections increased Gap43 expression from 2 weeks and reduced Iba1 expression in the optic nerves during the recovery period. In addition, R28 cells exposed to hypoxic conditions showed increased cell survival when cocultured with NPCs compared to PSCs. Both Wnt/β-catenin signaling and increased Nf-ĸb could contribute to the rescue of damaged retinal ganglion cells via upregulation of neuroprotective factors, microglial engagement, and anti-inflammatory regulation by NPCs. This study suggests that NPCs could be useful for the cellular treatment of various optic neuropathies, together with cell therapy using mesenchymal stem cells.

Treatment of Leber's hereditary optic neuropathy

Eur J Ophthalmol. 2020 Nov;30(6):1220-1227.


Source

Medicines Authority, San Ġwann, Malta.


Abstract

Leber's hereditary optic neuropathy (LHON) is a rare, maternally-inherited optic neuropathy caused by mitochondrial DNA point mutations and which can cause blindness. Currently, Raxone (idebenone) is the only available medicinal product authorised to treat LHON within the European Union and LHON remains an unmet medical need. The aim of this article was to summarise interventional clinical trials published over the past 5 years (between 2014 and 2019) with the primary purpose of treating LHON. Therapeutic approaches discussed include modulating agents of the mitochondrial electron transport chain such as Raxone, cysteamine bitartrate and KH176, inhibitors of apoptosis such as elamipretide, gene therapy medicinal products such as GS010 and scAAV2P1ND4 and retinal tissue regeneration medicinal products such as bone marrow-derived stem cells.

Regenerating Eye Tissues to Preserve and Restore Vision

Cell Stem Cell. 2018 Jun 1;22(6):834-849.


Source

Neural Stem Cell Institute, Rensselaer, NY 12144, USA; Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA.


Abstract
 

Ocular regenerative therapies are on track to revolutionize treatment of numerous blinding disorders, including corneal disease, cataract, glaucoma, retinitis pigmentosa, and age-related macular degeneration. A variety of transplantable products, delivered as cell suspensions or as preformed 3D structures combining cells and natural or artificial substrates, are in the pipeline. Here we review the status of clinical and preclinical studies for stem cell-based repair, covering key eye tissues from front to back, from cornea to retina, and including bioengineering approaches that advance cell product manufacturing. While recognizing the challenges, we look forward to a deep portfolio of sight-restoring, stem cell-based medicine.

Bone Marrow-Derived Mesenchymal Stem Cells-Derived Exosomes Promote Survival of Retinal Ganglion Cells Through miRNA-Dependent Mechanisms

Stem Cells Transl Med. 2017 Apr;6(4):1273-1285.


Source

Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.


Abstract
 

The loss of retinal ganglion cells (RGC) and their axons is one of the leading causes of blindness and includes traumatic (optic neuropathy) and degenerative (glaucoma) eye diseases. Although no clinical therapies are in use, mesenchymal stem cells (MSC) have demonstrated significant neuroprotective and axogenic effects on RGC in both of the aforementioned models. Recent evidence has shown that MSC secrete exosomes, membrane enclosed vesicles (30-100 nm) containing proteins, mRNA and miRNA which can be delivered to nearby cells. The present study aimed to isolate exosomes from bone marrow-derived MSC (BMSC) and test them in a rat optic nerve crush (ONC) model. Treatment of primary retinal cultures with BMSC-exosomes demonstrated significant neuroprotective and neuritogenic effects. Twenty-one days after ONC and weekly intravitreal exosome injections; optical coherence tomography, electroretinography, and immunohistochemistry was performed. BMSC-derived exosomes promoted statistically significant survival of RGC and regeneration of their axons while partially preventing RGC axonal loss and RGC dysfunction. Exosomes successfully delivered their cargo into inner retinal layers and the effects were reliant on miRNA, demonstrated by the diminished therapeutic effects of exosomes derived from BMSC after knockdown of Argonaute-2, a key miRNA effector molecule. This study supports the use of BMSC-derived exosomes as a cell-free therapy for traumatic and degenerative ocular disease. Stem Cells Translational Medicine 2017;6:1273-1285.

Stem Cell Therapy for Retinal Degeneration

Biologics. 2021; 15: 299–306.


Source

Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India


Abstract
 

There is a rise in the number of people who have vision loss due to retinal diseases, and conventional therapies for treating retinal degeneration fail to repair and regenerate the damaged retina. Several studies in animal models and human trials have explored the use of stem cells to repair the retinal tissue to improve visual acuity. In addition to the treatment of age-related macular degeneration (AMD) and diabetic retinopathy (DR), stem cell therapies were used to treat genetic diseases such as retinitis pigmentosa (RP) and Stargardt’s disease, characterized by gradual loss of photoreceptor cells in the retina. Transplantation of retinal pigment epithelial (RPE) cells derived from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have shown promising results in improving retinal function in various preclinical models of retinal degeneration and clinical studies without any severe side effects. Mesenchymal stem cells (MSCs) were utilized to treat optic neuropathy, RP, DR, and glaucoma with positive clinical outcomes. This review summarizes the preclinical and clinical evidence of stem cell therapy and current limitations in utilizing stem cells for retinal degeneration.

Bone marrow mesenchymal stem cells enhance autophagy and help protect cells under hypoxic and retinal detachment conditions

J Cell Mol Med. 2020 Mar; 24(6): 3346–3358.


Source

Eye Center, The Second Hospital of Jilin University, Changchun China


Abstract

Our study aimed to evaluate the protective role and mechanisms of bone marrow mesenchymal stem cells (BMSCs) in hypoxic photoreceptors and experimental retinal detachment. The cellular morphology, viability, apoptosis and autophagy of hypoxic 661w cells and cells cocultured with BMSCs were analysed. In retinal detachment model, BMSCs were intraocularly transplanted, and then, the retinal morphology, outer nuclear layer (ONL) thickness and rhodopsin expression were studied as well as apoptosis and autophagy of the retinal cells. The hypoxia‐induced apoptosis of 661w cells obviously increased together with autophagy levels increasing and peaking at 8 hours after hypoxia. Upon coculturing with BMSCs, hypoxic 661w cells had a better morphology and fewer apoptosis. After autophagy was inhibited, the apoptotic 661w cells under the hypoxia increased, and the cell viability was reduced, even in the presence of transplanted BMSCs. In retina‐detached eyes transplanted with BMSCs, the retinal ONL thickness was closer to that of the normal retina. After transplantation, apoptosis decreased significantly and retinal autophagy was activated in the BMSC‐treated retinas. Increased autophagy in the early stage could facilitate the survival of 661w cells under hypoxic stress. Coculturing with BMSCs protects 661w cells from hypoxic damage, possibly due to autophagy activation. In retinal detachment models, BMSC transplantation can significantly reduce photoreceptor cell death and preserve retinal structure. The capacity of BMSCs to reduce retinal cell apoptosis and to initiate autophagy shortly after transplantation may facilitate the survival of retinal cells in the low‐oxygen and nutrition‐restricted milieu after retinal detachment.

bottom of page